рефераты
рефераты рефераты
 логин:   
 пароль:  Регистрация 

МЕНЮ
   Архитектура
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Детали машин
Дистанционное образование
Другое
Жилищное право
Журналистика
Компьютерные сети
Конституционное право зарубежныйх стран
Конституционное право России
Краткое содержание произведений
Криминалистика и криминология
Культурология
Литература языковедение
Маркетинг реклама и торговля
Математика
Медицина
Международные отношения и мировая экономика
Менеджмент и трудовые отношения
Музыка
Налоги
Начертательная геометрия
Оккультизм и уфология
Педагогика
Полиграфия
Политология
Право
Предпринимательство
Программирование и комп-ры
Психология - рефераты
Религия - рефераты
Социология - рефераты
Физика - рефераты
Философия - рефераты
Финансы деньги и налоги
Химия
Экология и охрана природы
Экономика и экономическая теория
Экономико-математическое моделирование
Этика и эстетика
Эргономика
Юриспруденция
Языковедение
Литература
Литература зарубежная
Литература русская
Юридпсихология
Историческая личность
Иностранные языки
Эргономика
Языковедение
Реклама
Цифровые устройства
История
Компьютерные науки
Управленческие науки
Психология педагогика
Промышленность производство
Краеведение и этнография
Религия и мифология
Сексология
Информатика программирование
Биология
Физкультура и спорт
Английский язык
Математика
Безопасность жизнедеятельности
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Делопроизводство
Кредитование



Главная > Математика > Однополостный гиперболоид

Математика : Однополостный гиперболоид

Однополостный гиперболоид

Министерство высшего образования Российской Федерации

Московский государственный строительный университет

РЕФЕРАТ

На тему:

“Однополостный гиперболоид”

Факультет: ПГС

Группа: №15

Студент: Муравицкий А.С.

Преподаватель: Ситникова Е.Г.

Москва

2003

Поверхности второго порядка - это поверхности, которые в прямоугольной системе координат определяются алгебраическими уравнениями второй степени. К ним относится однополосный гиперболоид.

Однополосный гиперболоид.

Однополосным гиперболоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением

(1)

Из уравнения (1) вытекает, что координатные плоскости яв-ляются плоскостями симметрии, а начало координат -- центром симметрии однополостного гиперболоида.

Уравнение (1) называется каноническим уравнением однополосного гиперболоида.

Если однополостный гиперболоид задан своим каноническим уравнением (1) то оси Ох, Оу и Oz называются его глав-ными осями.

Установим вид поверхности (1). Для этого рассмотрим сечение ее координатными плоскостями Oxy (y=0) и Oyx (x=0). Получаем соответственно уравнения

и

из которых следует, что в сечениях получаются гиперболы.

Теперь рассмотрим сечения данного гиперболоида плоскостями z=h, параллельными координатной плоскости Oxy. Линия, получающаяся в сечении, определяется уравнениями

или

из которых следует, что плоскость z=h пересекает гиперболоид по эллипсу с полуосями и ,

достигающими своих наименьших значений при h=0, т.е. в сечении данного гиперболоида координатной осью Oxy получается самый маленький эллипс с полуосями a*=a и b*=b. При бесконечном возрастании величины a* и b* возрастают бесконечно.

Таким образом, рассмотренные сечения позволяют изобразить однополосный гиперболоид в виде бесконечной трубки, бесконечно расширяющейся по мере удаления (по обе стороны) от плоскости Oxy.

Величины a, b, c называются полуосями однополосного гиперболоида.

Исследование поверхности методом параллельных сечений.

Суть метода заключается в выяснении формы линий пересечения поверхности с плоскостями, параллельными координатным плоскостям.

Рассмотрим линии пересечения с плоскостями, параллельными плоскости OXY. Все уравнения линий пересечений будут получаться из уравнения плоскости, в котором z будет заменена на некоторое число, равное расстоянию от пересекающей плоскости до плоскости OXY. Для более наглядного представления, я изобразил все полученные кривые в виде проекций на плоскость OXY. Изображения кривых представлены выше.

Величины a, b, c называются полуосями однополосного гиперболоида. Если a=b,то гиперболоид может быть получен вращением гиперболы с полуосями а и с вокруг мнимой оси 2с.

Одним из примеров такой поверхности является конструкция радиобашни построенной по принципу сетчатых конструкций на Шаболовке (г. Москва), Владимиром Григорьевичем Шуховым в 1919 - 1922 гг. В прошедшем году исполнилось 80 лет Шаболовской радиобашне -- символу советского телевидения 40-60-х годов.

Список использованной литературы:

1.Шипачёв В.С.: «Высшая математика»

2.В.А. Ильин, Э.Г. Позняк: «Аналитическая геометрия»

3.И.Н.Бронштейн, К.А.Семендяев «Справочник по математике для инженеров и учащихся ВТУЗОВ»






Информационная Библиотека
для Вас!



 

 Поиск по порталу:
 

© ИНФОРМАЦИОННАЯ БИБЛИОТЕКА 2010 г.