рефераты
рефераты рефераты
 логин:   
 пароль:  Регистрация 

МЕНЮ
   Архитектура
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Детали машин
Дистанционное образование
Другое
Жилищное право
Журналистика
Компьютерные сети
Конституционное право зарубежныйх стран
Конституционное право России
Краткое содержание произведений
Криминалистика и криминология
Культурология
Литература языковедение
Маркетинг реклама и торговля
Математика
Медицина
Международные отношения и мировая экономика
Менеджмент и трудовые отношения
Музыка
Налоги
Начертательная геометрия
Оккультизм и уфология
Педагогика
Полиграфия
Политология
Право
Предпринимательство
Программирование и комп-ры
Психология - рефераты
Религия - рефераты
Социология - рефераты
Физика - рефераты
Философия - рефераты
Финансы деньги и налоги
Химия
Экология и охрана природы
Экономика и экономическая теория
Экономико-математическое моделирование
Этика и эстетика
Эргономика
Юриспруденция
Языковедение
Литература
Литература зарубежная
Литература русская
Юридпсихология
Историческая личность
Иностранные языки
Эргономика
Языковедение
Реклама
Цифровые устройства
История
Компьютерные науки
Управленческие науки
Психология педагогика
Промышленность производство
Краеведение и этнография
Религия и мифология
Сексология
Информатика программирование
Биология
Физкультура и спорт
Английский язык
Математика
Безопасность жизнедеятельности
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Делопроизводство
Кредитование



Главная > Экономико-математическое моделирование > Особенности решения задач в эконометрике

Экономико-математическое моделирование : Особенности решения задач в эконометрике

Особенности решения задач в эконометрике

31

Задание 1.

По 15 предприятиям, выпускающим один и тот же вид продукции известны значения двух признаков:

х - выпуск продукции, тыс. ед.;

у - затраты на производство, млн. руб.

x

y

5,3

18,4

15,1

22,0

24,2

32,3

7,1

16,4

11,0

22,2

8,5

21,7

14,5

23,6

10,2

18,5

18,6

26,1

19,7

30,2

21,3

28,6

22,1

34,0

4,1

14,2

12,0

22,1

18,3

28,2

Требуется:

4. Построить поле корреляции и сформулировать гипотезу о форме связи;

5. Построить модели:

Линейной парной регрессии;

Полулогарифмической парной регрессии;

Степенной парной регрессии; Для этого:

Рассчитать параметры уравнений;

Оценить тесноту связи с помощью коэффициента (индекса) корреляции;

Оценить качество модели с помощью коэффициента (индекса) детерминации и средней ошибки аппроксимации;

Дать с помощью среднего коэффициента эластичности сравнительную оценку силы связи фактора с результатом;

С помощью F-критерия Фишера оценить статистическую надежность результатов регрессионного моделирования;

По значениям характеристик, рассчитанных в пунктах 2-5 выбрать лучшее уравнение регрессии;

Используя метод Гольфрельда-Квандта проверить остатки на гетероскедастичность;

Рассчитать прогнозное значение результата, если прогнозное значение фактора увеличится на 5% от его среднего уровня. Для уровня значимости =0,05 определить доверительный интервал прогноза.

Решение.

1. Строим поле корреляции.

Анализируя расположение точек поля корреляции, предполагаем, что связь между признаками х и у может быть линейной, т.е. у=а+bх, или нелинейной вида: у=а+blnх, у = ахb.

Основываясь на теории изучаемой взаимосвязи, предполагаем получить зависимость у от х вида у=а+bх, т. к. затраты на производство y можно условно разделить на два вида: постоянные, не зависящие от объема производства - a, такие как арендная плата, содержание администрации и т.д.; и переменные, изменяющиеся пропорционально выпуску продукции bх, такие как расход материала, электроэнергии и т.д.

2.1 Модель линейной парной регрессии

2.1.1 Рассчитаем параметры a и b линейной регрессии у=а+bх.

Строим расчетную таблицу 1.

Таблица 1

x

y

yx

x2

y2

Аi

1

5,3

18,4

97,52

28,09

338,56

16,21

2,19

11,92

2

15,1

22,0

332,20

228,01

484,00

24,74

-2,74

12,46

3

24,2

32,3

781,66

585,64

1043,29

32,67

-0,37

1,14

4

7,1

16,4

116,44

50,41

268,96

17,77

-1,37

8,38

5

11,0

22,2

244,20

121,00

492,84

21,17

1,03

4,63

6

8,5

21,7

184,45

72,25

470,89

18,99

2,71

12,47

7

14,5

23,6

342,20

210,25

556,96

24,22

-0,62

2,62

8

10,2

18,5

188,70

104,04

342,25

20,47

-1,97

10,67

9

18,6

26,1

485,46

345,96

681,21

27,79

-1,69

6,48

10

19,7

30,2

594,94

388,09

912,04

28,75

1,45

4,81

11

21,3

28,6

609,18

453,69

817,96

30,14

-1,54

5,39

12

22,1

34,0

751,40

488,41

1156,00

30,84

3,16

9,30

13

4,1

14,2

58,22

16,81

201,64

15,16

-0,96

6,77

14

12,0

22,1

265,20

144,00

488,41

22,04

0,06

0,26

15

18,3

28,2

516,06

334,89

795,24

27,53

0,67

2,38

У

212,0

358,5

5567,83

3571,54

9050,25

358,50

0,00

99,69

среднее

14,133

23,900

371,189

238,103

603,350

23,90

0,00

6,65

Параметры a и b уравнения

Yx = a + bx

определяются методом наименьших квадратов:

Разделив на n и решая методом Крамера, получаем формулу для определения b:

Уравнение регрессии:

=11,591+0,871x

С увеличением выпуска продукции на 1 тыс. руб. затраты на производство увеличиваются на 0,871 млн. руб. в среднем, постоянные затраты равны 11,591 млн. руб.

2.1.2. Тесноту связи оценим с помощью линейного коэффициента парной корреляции.

Предварительно определим средние квадратические отклонения признаков.

Средние квадратические отклонения:

Коэффициент корреляции:

Между признаками X и Y наблюдается очень тесная линейная корреляционная связь.

2.1.3 Оценим качество построенной модели.

Определим коэффициент детерминации:

т. е. данная модель объясняет 90,5% общей дисперсии у, на долю необъясненной дисперсии приходится 9,5%.

Следовательно, качество модели высокое.

Найдем величину средней ошибки аппроксимации Аi .

Предварительно из уравнения регрессии определим теоретические значения для каждого значения фактора.

Ошибка аппроксимации Аi, i=1…15:

Средняя ошибка аппроксимации:

Ошибка небольшая, качество модели высокое.

5.1.4. Определим средний коэффициент эластичности:

Он показывает, что с увеличением выпуска продукции на 1% затраты на производство увеличиваются в среднем на 0,515%.

2.1.5.Оценим статистическую значимость полученного уравнения. Проверим гипотезу H0, что выявленная зависимость у от х носит случайный характер, т. е. полученное уравнение статистически незначимо. Примем б=0,05. Найдем табличное (критическое) значение F-критерия Фишера:

Найдем фактическое значение F- критерия Фишера:

следовательно, гипотеза H0 отвергается, принимается альтернативная гипотеза H1: с вероятностью 1-б=0,95 полученное уравнение статистически значимо, связь между переменными x и y неслучайна.

Построим полученное уравнение.

2.2. Модель полулогарифмической парной регрессии.

2.2.1. Рассчитаем параметры а и b в регрессии:

уx =а +blnх.

Линеаризуем данное уравнение, обозначив:

z=lnx.

Тогда:

y=a + bz.

Параметры a и b уравнения

= a + bz

определяются методом наименьших квадратов:

Рассчитываем таблицу 2.

Таблица 2

x

y

z

yz

z2

y2

Аi

1

5,3

18,4

1,668

30,686

2,781

338,56

15,38

3,02

16,42

2

15,1

22,0

2,715

59,723

7,370

484,00

25,75

-3,75

17,03

3

24,2

32,3

3,186

102,919

10,153

1043,29

30,42

1,88

5,83

4

7,1

16,4

1,960

32,146

3,842

268,96

18,27

-1,87

11,42

5

11,0

22,2

2,398

53,233

5,750

492,84

22,61

-0,41

1,84

6

8,5

21,7

2,140

46,439

4,580

470,89

20,06

1,64

7,58

7

14,5

23,6

2,674

63,110

7,151

556,96

25,34

-1,74

7,39

8

10,2

18,5

2,322

42,964

5,393

342,25

21,86

-3,36

18,17

9

18,6

26,1

2,923

76,295

8,545

681,21

27,81

-1,71

6,55

10

19,7

30,2

2,981

90,015

8,884

912,04

28,38

1,82

6,03

11

21,3

28,6

3,059

87,479

9,356

817,96

29,15

-0,55

1,93

12

22,1

34,0

3,096

105,250

9,583

1156,00

29,52

4,48

13,18

13

4,1

14,2

1,411

20,036

1,991

201,64

12,84

1,36

9,60

14

12,0

22,1

2,485

54,916

6,175

488,41

23,47

-1,37

6,20

15

18,3

28,2

2,907

81,975

8,450

795,24

27,65

0,55

1,95

У

212,0

358,5

37,924

947,186

100,003

9050,25

358,50

0,00

131,14

Средн.

14,133

23,900

2,528

63,146

6,667

603,350

23,90

0,00

8,74

Разделив на n и решая методом Крамера, получаем формулу для определения b:

Уравнение регрессии:

= -1,136 + 9,902z

2.2.2. Оценим тесноту связи между признаками у и х.

Т. к. уравнение у = а + bln x линейно относительно параметров а и b и его линеаризация не была связана с преобразованием зависимой переменной _у, то теснота связи между переменными у и х, оцениваемая с помощью индекса парной корреляции Rxy, также может быть определена с помощью линейного коэффициента парной корреляции ryz

среднее квадратическое отклонение z:

Значение индекса корреляции близко к 1, следовательно, между переменными у и х наблюдается очень тесная корреляционная связь вида = a + bz.

2.2.3 Оценим качество построенной модели.

Определим коэффициент детерминации:

т. е. данная модель объясняет 83,8% общей вариации результата у, на долю необъясненной вариации приходится 16,2%.

Следовательно, качество модели высокое.

Найдем величину средней ошибки аппроксимации Аi .

Предварительно из уравнения регрессии определим теоретические значения для каждого значения фактора.

Ошибка аппроксимации Аi, i=1…15:

Средняя ошибка аппроксимации:

Ошибка небольшая, качество модели высокое.

2.2.4.Определим средний коэффициент эластичности:

Он показывает, что с увеличением выпуска продукции на 1% затраты на производство увеличиваются в среднем на 0,414%.

2.2.5.Оценим статистическую значимость полученного уравнения. Проверим гипотезу H0, что выявленная зависимость у от х носит случайный характер, т.е. полученное уравнение статистически незначимо. Примем б=0,05.

Найдем табличное (критическое) значение F-критерия Фишера:

Найдем фактическое значение F-критерия Фишера:

следовательно, гипотеза H0 отвергается, принимается альтернативная гипотеза H1: с вероятностью 1-б=0,95 полученное уравнение статистически значимо, связь между переменными x и y неслучайна.

Построим уравнение регрессии на поле корреляции

2.3. Модель степенной парной регрессии.

2.3.1. Рассчитаем параметры а и b степенной регрессии:

Расчету параметров предшествует процедура линеаризации данного уравнения:

и замена переменных:

Y=lny, X=lnx, A=lna

Параметры уравнения:

Y=A+bX

определяются методом наименьших квадратов:

Рассчитываем таблицу 3.

Определяем b:

Уравнение регрессии:

Построим уравнение регрессии на поле корреляции:

2.3.2. Оценим тесноту связи между признаками у и х с помощью индекса парной корреляции Ryx.

Предварительно рассчитаем теоретическое значение для каждого значения фактора x, и , тогда:

Значение индекса корреляции Rxy близко к 1, следовательно, между переменными у и х наблюдается очень тесная корреляционная связь вида:

2.3.3.Оценим качество построенной модели.

Определим индекс детерминации:

R2=0,9362=0,878,

т. е. данная модель объясняет 87,6% общей вариации результата у, а на долю необъясненной вариации приходится 12,4%.

Качество модели высокое.

Найдем величину средней ошибки аппроксимации.

Ошибка аппроксимации Аi, i=1…15:

Средняя ошибка аппроксимации:

Ошибка небольшая, качество модели высокое.

2.3.4. Определим средний коэффициент эластичности:

Он показывает, что с увеличением выпуска продукции на 1% затраты на производство увеличиваются в среднем на 0,438%.

2.3.5.Оценим статистическую значимость полученного уравнения.

Проверим гипотезу H0, что выявленная зависимость у от х носит случайный характер, т. е. полученное уравнение статистически незначимо. Примем б=0,05.

табличное (критическое) значение F-критерия Фишера:

фактическое значение F-критерия Фишера:

Таблица 3

x

y

X

Y

YX

X2

y2

Аi

1

5,3

18,4

1,668

2,912

4,857

2,781

338,56

15,93

2.47

6,12

13,44

2

15,1

22,0

2,715

3,091

8,391

7,370

484,00

25,19

-3,19

10,14

14,48

3

24,2

32,3

3,186

3,475

11,073

10,153

1043,29

30,96

1,34

1,80

4,15

4

7,1

16,4

1,960

2,797

5,483

3,842

268,96

18,10

-1,70

2,89

10,37

5

11,0

22,2

2,398

3,100

7,434

5,750

492,84

21,92

0,28

0,08

1,24

6

8,5

21,7

2,140

3,077

6,586

4,580

470,89

19,58

2,12

4,48

9,75

7

14,5

23,6

2,674

3,161

8,454

7,151

556,96

24,74

-1,14

1,30

4,84

8

10,2

18,5

2,322

2,918

6,776

5,393

342,25

21,21

-2,71

7,35

14,66

9

18,6

26,1

2,923

3,262

9,535

8,545

681,21

27,59

-1,49

2,22

5,71

10

19,7

30,2

2,981

3,408

10,157

8,884

912,04

28,29

1,91

3,63

6,31

11

21,3

28,6

3,059

3,353

10,257

9,356

817,96

29,28

-0,68

0,46

2,37

12

22,1

34,0

3,096

3,526

10,916

9,583

1156,00

29,75

4,25

18,03

12,49

13

4,1

14,2

1,411

2,653

3,744

1,991

201,64

14,23

-0,03

0,00

0,24

14

12,0

22,1

2,485

3,096

7,692

6,175

488,41

22,78

-0,68

0,46

3,06

15

18,3

28,2

2,907

3,339

9,707

8,450

795,24

27,40

0,80

0,65

2,85

сумма

212,0

358,5

37,924

47,170

121,062

100,003

9050,25

358,5

0,00

59,61

105,95

среднее

14,133

23,900

2,528

3,145

8,071

6,667

603,350

23,90

0,00

3,97

7,06

следовательно, гипотеза H0 отвергается, принимается альтернативная гипотеза H1: с вероятностью 1-б=0,95 полученное уравнение статистически значимо, связь между переменными x и y неслучайна.

3. Выбор лучшего уравнения.

Составим таблицу полученных результатов исследования.

Таблица 4

Уравнение

Коэффициент (индекс) корреляции

Коэффициент (индекс) детерминации

Средняя ошибка аппроксимации

Коэффициент эластичности

линейное

0,951

0,905

6,65

0,515

полулогагифмическое

0,915

0,838

8,74

0,414

степенное

0,936

0,878

7,06

0,438

Анализируем таблицу и делаем выводы.

ъ Все три уравнения оказались статистически значимыми и надежными, имеют близкий к 1 коэффициент (индекс) корреляции, высокий (близкий к 1) коэффициент (индекс) детерминации и ошибку аппроксимации в допустимых пределах.

ъ При этом характеристики линейной модели указывают, что она несколько лучше полулогарифмической и степенной описывает связь между признаками x и у.

ъ Поэтому в качестве уравнения регрессии выбираем линейную модель.

4. Для выбранной модели проверим предпосылку МНК о гомоскедастичности остатков, т. е. о том, что остатки регрессии имеют постоянную дисперсию.

Используем метод Гольдфельдта-Квандта.

1. Упорядочим наблюдения по мере возрастания переменной х.

2. Исключим из рассмотрения 3 центральных наблюдения.

3. Рассмотрим первую группу наблюдений (малые значения фактора х) и определим этой группы.

4. Рассмотрим вторую группу наблюдений (большие значения фактора х) и определим этой группы.

5. Проверим, значимо или незначимо отличаются дисперсии остатков этих групп.

Таблица 5

x

y

yx

x2

y2

1

4,1

14,2

58,22

16,81

201,64

15,47

-1,27

1,60

2

5,3

18,4

97,52

28,09

338,56

16,50

1,90

3,61

3

7,1

16,4

116,44

50,41

268,96

18,05

-1,65

2,72

4

8,5

21,7

184,45

72,25

470,89

19,26

2,44

5,97

5

10,2

18,5

188,70

104,04

342,25

20,72

-2,22

4,93

6

11,0

22,2

244,20

121,00

492,84

21,41

0,79

0,63

сумма

46,2

111,4

889,53

392,60

2115,14

111,40

0,00

19,46

среднее

7,70

18,57

148,26

65,43

352,52

18,57

0,00

3,89

Определим параметры уравнения регрессии 1 группы:

Уравнение регрессии 1 группы:

=11,93+0,86x

Таблица 6

x

y

yx

x2

y2

10

18,3

28,2

516,06

334,89

795,24

27,56

0,64

0,41

11

18,6

26,1

485,46

345,96

681,21

27,85

-1,75

3,06

12

19,7

30,2

594,94

388,09

912,04

28,92

1,28

1,63

13

21,3

28,6

609,18

453,69

817,96

30,49

-1,89

3,56

14

22,1

34,0

751,40

488,41

1156,00

31,27

2,73

7,47

15

24,2

32,3

781,66

585,64

1043,29

33,32

-1,02

1,03

сумма

124,2

179,4

3738,70

2596,68

5405,74

179,40

0,00

17,17

среднее

20,70

29,90

623,12

432,78

900,96

29,90

0,00

3,43

Параметры уравнения регрессии 2 группы:

Уравнение регрессии 2 группы:

=9,7+0,98x

S1=19.46>S2=17.17

Fфакт.< Fтабл.

следовательно, остатки гомоскедастичны, предпосылки МНК не нарушены.

5. Рассчитаем прогнозное значение результата у, если прогнозное значение фактора х увеличивается на 5% от его среднего уровня.

Точечный прогноз:

11,59+0,871,0514,13=24,515 млн. руб.

Для данной величины выпуска продукции прогнозное значение затрат на производство составляет 24,515 млн. руб.

Для уровня значимости б= 0,05 определим доверительный интервал прогноза.

Предварительно определим стандартные ошибки коэффициента корреляции и параметра b.

Стандартная ошибка коэффициента корреляции:

Ошибка прогноза:

Доверительный интервал прогноза значений y при с вероятностью 0,95 составит:

Прогноз надежный, но не очень точный, т. к.

Задание 2

Имеются данные о заработной плате у (тысяч рублей), возрасте х1 (лет), стаже работы по специальности х2 (лет) и выработке х3 (штук в смену) по 15 рабочим цеха:

y

х1

х2

х3

1

3,2

30

6

12

2

4,5

41

18

20

3

3,3

37

11

12

4

3,0

33

9

18

5

2,8

24

4

15

6

3,9

44

19

17

7

3,7

37

18

17

8

4,2

39

22

26

9

4,7

49

30

26

10

4,4

48

24

22

11

2,9

29

8

18

12

3,7

31

6

20

13

2,4

26

5

10

14

4,5

47

19

20

15

2,6

29

4

15

Требуется:

1. С помощью определителя матрицы парных коэффициентов межфакторной корреляции оценить мультиколлинеарность факторов, исключить из модели фактор, ответственный за мультиколлинеарность.

2. Построить уравнение множественной регрессии в стандартизованной форме:

Оценить параметры уравнения.

Используя стандартизованные коэффициенты регрессии сравнить факторы по силе их воздействия на результат.

Оценить тесноту связи между результатом и факторами с помощью коэффициента множественной корреляции.

Оценить с помощью коэффициента множественной детерминации качество модели.

Используя F-критерий Фишера оценить статистическую значимость присутствия каждого из факторов в уравнении регрессии.

Построить уравнение множественной регрессии в естественной форме, пояснить экономический смысл параметров уравнения.

Найти среднюю ошибку аппроксимации.

Рассчитать прогнозное значение результата, если прогнозное значение факторов составит: х1 = 35 лет, х2 = 10 лет, х3 = 20 штук в смену.

Решение.

Для оценки мультиколлинеарности факторов используем определитель матрицы парных коэффициентов корреляции между факторами.

Определим парные коэффициенты корреляции.

Для этого рассчитаем таблицу 7.

Используя рассчитанную таблицу, определяем дисперсию y, x1, x2, x3.

Найдем среднее квадратическое отклонение признаков y, x1, x2, x3, как корень квадратный из соответствующей дисперсии.

Определим парные коэффициенты корреляции:

таблица 7

y

y2

x1

x12

x2

x22

x3

x32

yx1

yx2

yx3

x1x2

x1x3

x2x3

Аi

1

3,2

10,24

30

900

6

36

12

144

96,0

19,2

38,4

180

360

72

2,87

0,33

10,18

2

4,5

20,25

41

1681

18

324

20

400

184,5

81,0

90,0

738

820

360

4,00

0,50

11,03

3

3,3

10,89

37

1369

11

121

12

144

122,1

36,3

39,6

407

444

132

3,32

-0,02

0,73

4

3,0

9,00

33

1089

9

81

18

324

99,0

27,0

54,0

297

594

162

3,38

-0,38

12,79

5

2,8

7,84

24

576

4

16

15

225

67,2

11,2

42,0

96

360

60

2,65

0,15

5,47

6

3,9

15,21

44

1936

19

361

17

289

171,6

74,1

66,3

836

748

323

4,04

-0,14

3,54

7

3,7

13,69

37

1369

18

324

17

289

136,9

66,6

62,9

666

629

306

3,59

0,11

3,03

8

4,2

17,64

39

1521

22

484

26

676

163,8

92,4

109,2

858

1014

572

4,19

0,01

0,20

9

4,7

22,09

49

2401

30

900

26

676

230,3

141,0

122,2

1470

1274

780

4,83

-0,13

2,86

10

4,4

19,36

48

2304

24

576

22

484

211,2

105,6

96,8

1152

1056

528

4,56

-0,16

3,61

11

2,9

8,41

29

841

8

64

18

324

84,1

23,2

52,2

232

522

144

3,13

-0,23

7,82

12

3,7

13,69

31

961

6

36

20

400

114,7

22,2

74,0

186

620

120

3,36

0,34

9,17

13

2,4

5,76

26

676

5

25

10

100

62,4

12,0

24,0

130

260

50

2,51

-0,11

4,65

14

4,5

20,25

47

2209

19

361

20

400

211,5

85,5

90,0

893

940

380

4,39

0,11

2,46

15

2,6

6,76

29

841

4

16

15

225

75,4

10,4

39,0

116

435

60

2,97

-0,37

14,17

у

53,8

201,08

544

20674

203

3725

268

5100

2030,7

807,7

1000,6

8257

10076

4049

53,80

0,00

91,69

ср.

3,59

13,41

36,27

1378,27

13,53

248,33

17,87

340,00

135,38

53,85

66,71

550,47

671,73

269,93

3,59

0,00

6,11

Матрица парных коэффициентов корреляции:

y

x1

x2

x3

y

1,000

x1

0,908

1,000

x2

0,894

0,931

1,000

x3

0,783

0,657

0,765

1,000

Анализируем матрицу парных коэффициентов корреляции.

ъ rx1x2=0.931, т. е. между факторами x1 и x2 существует сильная корреляционная связь, один из этих факторов необходимо исключить.

ъ rx1x3=0.657 меньше, чем rx2x3=0.765, т.е. корреляция фактора х2 с фактором х3 сильнее, чем корреляция факторов х1 и х3.

ъ Из модели следует исключить фактор х2, т.к. он имеет наибольшую тесноту связи с х3 и, к тому же, менее тесно (по сравнению с x1) связан с результатом у (0.894<0.908).

2.1. Уравнение регрессии в естественной форме будет иметь вид:

yx = a + blx]+b3x3,

фактор х2 исключен из модели.

Стандартизованное уравнение:

ty = в1tx1+в3tx3

где:

ty , tx1, tx3 - стандартизованные переменные.

Параметры уравнения в1 и в3 определим методом наименьших квадратов из системы уравнений:

Или:

Систему решаем методом Крамера:

?=

1

0,657

= 1-0,6572= 0,568

0,657

1

1=

0,908

0,657

= 0,908-0,6570,783=0,394

0,783

1

3=

1

0,571

=0,833-0,5710,413= 0,186

0,413

0,833

Тогда:

Получили уравнение множественной регрессии в стандартизованном масштабе:

ty = 0,693tx1+0,327tx3

Коэффициенты в1 и в3 сравнимы между собой в отличии от коэффициентов чистой регрессии b1 и b3.

в1=0,693 больше в3=0,327, следовательно, фактор x1 сильнее влияет на результат y чем фактор x3.

Определим индекс множественной корреляции:

Cвязь между y и факторами x1, x3 характеризуется как тесная, т. к. значение индекса множественной корреляции близко к 1.

Коэффициент множественной детерминации:

R 2yx1x3=(0.941)2=0.886

Т. е. данная модель объясняет 88,6% вариации y, на долю неучтенных в модели факторов приходится 100-88,6=11,4%

Оценим значимость полученного уравнения регрессии с помощью F-критерия Фишера:

Fтабл(б=0,05; k1=2; k2=15-2-1=12)=3,88

Табличное значение критерия Фишера (определяем по таблице значений критерия Фишера при заданном уровне значимости б и числе степеней свободы k1 и k2) меньше фактического значения критерия. следовательно, гипотезу H0 о том, что полученное уравнение статистически незначимо и ненадежно, отвергаем и принимаем альтернативную гипотезу H1: полученное уравнение статистически значимо, надежно и пригодно для анализа и прогноза.

Оценим статистическую значимость включения в модель факторов x1 и x2.

Fтабл (б=0,05; k1=1; k2=15-2-1=12)=4,75

Fx1 >Fтабл.

Fx3 >Fтабл.

Значит, включение в модель факторов x1 и x3 статистически значимо.

Перейдем к уравнению регрессии в естественном масштабе:

Уравнение множественной регрессии в естественном масштабе:

Экономическая интерпретация параметров уравнения:

b1=0.064, это значит, что с увеличением x1 - возраста рабочего на 1 год заработная плата рабочего увеличивается в среднем на 64 рубля, если при этом фактор x2 - выработка рабочего не меняется и фиксирован на среднем уровне.

b3=0,053, это значит, что с увеличением x3 - выработки рабочего на 1 шт. в смену, заработная плата рабочего увеличивается в среднем на 53 рубля, если при этом фактор x1 - возраст рабочего не меняется и фиксирован на среднем уровне.

a=0,313 не имеет экономической интерпретации, формально это значение результата y при нулевом значении факторов, но факторы могут и не иметь нулевого значения.

Найдем величину средней ошибки аппроксимации, таблица 7.

Ошибка аппроксимации Аi, i=1…15:

Средняя ошибка аппроксимации:

Ошибка небольшая, качество модели высокое.

Используем полученную модель для прогноза.

Если х1 =35, х2 =10, х3 =20, то

ур = 0,313 + 0,064*35 + 0,053*20 = 3,618 тыс. руб.

т. е. для рабочего данного цеха, возраст которого 35 лет, а выработка 20 шт. в смену, прогнозное значение заработной платы - 3618 руб.




Информационная Библиотека
для Вас!



 

 Поиск по порталу:
 

© ИНФОРМАЦИОННАЯ БИБЛИОТЕКА 2010 г.