рефераты
рефераты рефераты
 логин:   
 пароль:  Регистрация 

МЕНЮ
   Архитектура
География
Геодезия
Геология
Геополитика
Государство и право
Гражданское право и процесс
Делопроизводство
Детали машин
Дистанционное образование
Другое
Жилищное право
Журналистика
Компьютерные сети
Конституционное право зарубежныйх стран
Конституционное право России
Краткое содержание произведений
Криминалистика и криминология
Культурология
Литература языковедение
Маркетинг реклама и торговля
Математика
Медицина
Международные отношения и мировая экономика
Менеджмент и трудовые отношения
Музыка
Налоги
Начертательная геометрия
Оккультизм и уфология
Педагогика
Полиграфия
Политология
Право
Предпринимательство
Программирование и комп-ры
Психология - рефераты
Религия - рефераты
Социология - рефераты
Физика - рефераты
Философия - рефераты
Финансы деньги и налоги
Химия
Экология и охрана природы
Экономика и экономическая теория
Экономико-математическое моделирование
Этика и эстетика
Эргономика
Юриспруденция
Языковедение
Литература
Литература зарубежная
Литература русская
Юридпсихология
Историческая личность
Иностранные языки
Эргономика
Языковедение
Реклама
Цифровые устройства
История
Компьютерные науки
Управленческие науки
Психология педагогика
Промышленность производство
Краеведение и этнография
Религия и мифология
Сексология
Информатика программирование
Биология
Физкультура и спорт
Английский язык
Математика
Безопасность жизнедеятельности
Банковское дело
Биржевое дело
Бухгалтерский учет и аудит
Валютные отношения
Ветеринария
Делопроизводство
Кредитование



Главная > Экономико-математическое моделирование > Экономико-математическое моделирование

Экономико-математическое моделирование : Экономико-математическое моделирование

Экономико-математическое моделирование

8

1. Определить нижнюю и верхнюю цену игры, заданной платежной матрицей

Имеет ли игра седловую точку?

Решение:

Найдем по каждой строчке платежной матрицы минимальное число бi = min (бi1, бi2, бi3) - это гарантированный выигрыш игрока А, при выборе им соответствующей стратегии. Чтобы получить максимально возможный гарантированный выигрыш, игрок А должен выбрать ту стратегию, для которой бij имеет максимальное значение - б = max(б1, б2, б3) - это нижняя цена игры.

Для игрока В выберем по каждому столбцу максимальное число вj = max(б1j, б2j, б3j) - это гарантированный проигрыш игрока В при выборе им стратегии Вj. Найдем минимальное из этих чисел в = min (в 1, в 2, в 3) - это верхняя цена игры. Занесем полученные данные в таблицу 1.

Нижняя цена игры б = 8 равна верхней цене игры в = 8. Значит, игра имеет седловую точку. Для игрока А оптимальная стратегия - А1, для игрока В оптимальная стратегия - В1.

Ответ: б = в = 8, игра имеет седловую точку, оптимальные стратегии (А1, В1).

Таблица 1 - Определение цены игры платежной матрицы

В1

В2

В3

А1

8

9

9

б1 = min (8, 9, 9) = 8

А2

6

5

8

б2 = min (6, 5, 8) = 5

А3

3

4

5

б3 = min (3, 4, 5) = 3

в1 = max(8, 6, 3)

в1= 8

в2 = max(9, 5, 4)

в2= 9

в3 = max(9, 8, 5)

в3= 9

б = max(8, 5, 3) = 8

в = min (8, 9, 9) = 8

2. Решить графически игру, заданную платежной матрицей

Решение:

Дана игра 4 х 2 , то есть у игрока А имеется 4 стратегии, а у игрока В - 2. Поэтому, будем решать игру для игрока В. Построим оси: ОХ - на ней будем отмечать вероятности, с которыми игрок использует ту или иную стратегии, и ОУ - на ней будем откладывать цену игры. На расстоянии единица от оси ОУ проведем еще ось параллельную ей, как показано на рисунке 1.

Если игрок А выбирает стратегию А1, то игрок В, используя свои стратегии с вероятностями (q1, q2), будет проигрывать, в среднем, q1?б11+q2?б12 = q1•(-3) +q2•(-4). Отметим на оси ОУ б11 = -3, а на оси ей параллельной б12 = -4 и соединим эти точки прямой линией - она показывает, сколько, в среднем, получает игрок В, если А использует стратегию А1, а В чередует стратегии В1 и В2 с некоторыми вероятностями (q1, q2). Аналогично отмечаем на оси ОУ точку -1, а на параллельной ей оси - точку 2 и соединяем отрезком. Получаем линию, показывающую, сколько, в среднем, получает игрок В, если А выбрал стратегию А2. Точно также для А3 и А4.

Для игрока В надо выбрать верхнюю границу, так как он должен рассчитывать, что А выберет ту стратегию, которая соответствует наибольшему проигрышу для игрока В. На рисунке 1 это ломанная А3КА2, выделенная толстой линией. Игроку В следует выбрать ту смешанную стратегию, которая соответствует наименьшему проигрышу для В - точка К. Это точка пересечения прямых, соответствующих стратегиям А3 и А2. Выпишем уравнения этих прямых.

Прямая (А3 А3) проходит через точки с координатами (0;2) и (1;-4). Уравнение этой прямой запишется в следующем виде:

Уравнение прямой (А2 А2), проходящей через точки (0;-1) и (1;2), запишется в следующем виде:

Рисунок 1 -Графическое решение

Точка К - точка пересечения этих прямых, имеет координаты, удовлетворяющие системе:

Решение системы:

Следовательно, цена игры н = 0, оптимальная стратегия для игрока В:

Для игрока А, стратегии А1 и А4 будут не активными, игроку А не выгодно их использовать. Максимально возможный выигрыш, равный цене игры н = 0, игрок А будет получать, используя стратегии А2 и А3. Найдем оптимальную смешанную стратегию для игрока А из следующей системы, учитывая, что А1 и А4 не активные стратегии, то есть р1 = р4 = 0:

Ответ: Цена игры н = 0, оптимальные стратегии игроков

3. Решить геометрически следующую задачу линейного программирования:

при ограничениях:

Решение:

Построим область ограничений. Строим прямую (1): x1 - 4x2 - 4 = 0 по двум точкам, координаты которых удовлетворяют уравнению: (8; 1), (4; 0), как показано на рисунке 2. Проверяем, какая полуплоскость удовлетворяет неравенству , для этого подставим значение произвольной точки (0; 0) в это неравенство, получим - выполняется. Аналогичным способом строим прямые (2): и (3): , выделяем «бородой» области значений x1, x2, удовлетворяющие условиям и . На рисунке 2 изображена область, удовлетворяющая представленной в условиях задачи системе. Заметим, что и одно из неравенств системы - , тогда, очевидно, функция F принимает значения интервала , но , тогда Fmax = .

Ответ: Fmax = .

Рисунок 2 - Графическое решение

4. Для выпуска двух видов продукции А и В предприятие использует 4 вида ресурсов, все данные представлены в следующей таблице:

Вид ресурса

Расход ресурсов для выпуска одного изделия

Наличие ресурса

А

В

Рабочая сила

1

3

3

Сырье

6

3

24

Оборудование

2

5

20

Производственные ресурсы

2

2

10

Прибыль от реализации единицы продукции А и В составляет 50 и 70 ДЕ, соответственно. Предприятие может нанять людей на работу, а увольнять людей не разрешается. Составить план выпуска продукции, чтобы прибыль от ее реализации была максимальной. Сколько человек придется нанять?

Решение:

Обозначим x1, x2 - число единиц продукции соответственно А и В, запланированных к производству. По условию для их изготовления потребуется (1• x1 + 3• x2) единиц ресурса «Рабочая сила», (6• x1 + 3• x2) единиц ресурса «Сырье», (2• x1 + 5• x2) единиц ресурса «Оборудование», (2• x1 + 2• x2) единиц ресурса «Производственные ресурсы». Так как потребление всех этих видов ресурсов не должно превышать наличие ресурсов, то связь между потреблением ресурсов и их запасами выразится системой неравенств:

где а ? 3 и а - целое число (количество работников).

Суммарная прибыль стремиться к максимальному значению:

Все значения x1 и x2 лежат в I четверти, а функция F - луч, исходящий из точки (0; 0) под углом б к оси ОX1, где т.е. - функция прибыли F. Строим графическое решение для неравенств (2): , (3): , (4): , как это показано на рисунке 3.

Максимально возможная прибыль из графического решения в точке К, координаты которой находим из системы:

С учетом, x1, x2 - целые числа (только конечный продукт можно продать и получить прибыль), находим: при х1 = х2 = 2 возможно получение максимальной прибыли Подставив х1 = х2 = 2 в неравенство (1): , получим ,т.е. а = 8. Необходимо дополнительно нанять 8 - 3 = 5 человек.

Ответ: Максимально возможная прибыль 240 ДЕ возможна при производстве изделий А - 2шт. и изделий В - 2 шт., при этом придется дополнительно нанять 5 работников.

Рисунок 3 - Графическое решение

5. Построить граф состояний следующего случайного процесса: система состоит из двух аппаратов по продаже билетов, каждый из которых в случайный момент времени может быть либо занятым, либо свободным.

Решение:

Система может находиться в четырех состояниях, так как у каждого аппарата по продаже билетов есть два состояния (быть занятым или свободным). Пусть S0 - оба аппарата заняты; S1 - 1-ый занят, 2-ой свободен; S2 - 1-ый свободен, 2-ой занят; S3 - оба аппарата свободны. Построим граф состояний, отметив на нем все возможные состояния кругами, а возможные переходы из состояния в состояние обозначим стрелками. Получаем, что переход из S0 в S3 возможен либо через S1, либо через S2, либо напрямик, как показано на рисунке 4.

Рисунок 4 - Граф состояний аппаратов по продаже билетов

6. Найти предельные вероятности для системы S, граф которой изображен на рисунке.

Решение:

В теории случайных процессов доказывается, что если число состояний системы конечно и из каждого из них можно (за конечное число шагов) перейти в любое другое состояние, то предельные вероятности существуют. Их можно найти из уравнений Колмогорова, составив систему по данному размеченному графу состояний, по следующему правилу:

Слева в уравнении стоит предельная вероятность данного состояния pi, умноженная на суммарную интенсивность всех потоков, ведущих из данного состояния, а справа - сумма произведений интенсивностей всех потоков, входящих в данное состояние, на вероятности тех состояний, из которых эти состояния выходят.

Кроме этого надо учитывать, что сумма всех вероятностей данной конечной системы равна единице. Составим уравнения для состояний S1 и S2 (уравнение для состояния S0 - «лишнее»):

Ответ: Система примерно 66,67% времени пребывает в состоянии S0, 25% - в состоянии S1 и 8,33% времени находится в состоянии S2.

7. Найти валовой выпуск для сбалансированной многоотраслевой экономики в модели Леонтьева, если дана матрица прямых затрат А и вектор конечного потребления У:

Решение:

Для сбалансированной многоотраслевой экономики выполняется следующее соотношение:

где

Х

-

вектор валового выпуска;

У

-

вектор конечного потребления;

А

-

матрица прямых затрат.

Выразим валовой выпуск через конечное потребление и матрицу затрат:

Находим матрицу, обратную к (Е - А):

Найдем валовой выпуск:

Х =

Ответ: Валовой выпуск равен (811,3; 660,4).

*При решении задач использовался источник:

Алесинская Т.В. Учебное пособие по решению задач по курсу "Экономико-математические методы и модели". - Таганрог: Изд-во ТРТУ, 2002. - 153 с.




Информационная Библиотека
для Вас!



 

 Поиск по порталу:
 

© ИНФОРМАЦИОННАЯ БИБЛИОТЕКА 2010 г.